Machine Learning: Natural Language Processing in Python (V2)

Udemy
Deal Score+5
Deal Score+5
Machine Learning: Natural Language Processing in Python (V2)
Natural Language Processing in Python

NLP: Use Markov Models, NLTK, Artificial Intelligence, Deep Learning, Machine Learning, and Data Science in Python

Product Brand: Udemy

Editor's Rating:
4.8

Udemy Coupon Code for Machine Learning: Natural Language Processing in Python (V2) Course. NLP: Use Markov Models, NLTK, Artificial Intelligence, Deep Learning, Machine Learning, and Data Science in Python

Created by Lazy Programmer Inc, Lazy Programmer Team | 15.5 hours on-demand video course

Natural Language Processing in Python Course Overview

Machine Learning: Natural Language Processing in Python (V2)

Ever wondered how AI technologies like OpenAI ChatGPT, GPT-4, DALL-E, Midjourney, and Stable Diffusion really work? In this course, you will learn the foundations of these groundbreaking applications.

In part 1, which covers vector models and text preprocessing methods, you will learn about why vectors are so essential in data science and artificial intelligence. You will learn about various techniques for converting text into vectors, such as the CountVectorizer and TF-IDF, and you’ll learn the basics of neural embedding methods like word2vec, and GloVe.

In part 2, which covers probability models and Markov models, you’ll learn about one of the most important models in all of data science and machine learning in the past 100 years. It has been applied in many areas in addition to NLP, such as finance, bioinformatics, and reinforcement learning.

In part 3, which covers machine learning methods, you’ll learn about more of the classic NLP tasks. This section will be application-focused rather than theory-focused, meaning that instead of spending most of our effort learning about the details of various ML algorithms, you’ll be focusing on how they can be applied to the above tasks.

In part 4, which covers deep learning methods, you’ll learn about modern neural network architectures that can be applied to solve NLP tasks. Thanks to their great power and flexibility, neural networks can be used to solve any of the aforementioned tasks in the course.

What you’ll learn

  • How to convert text into vectors using CountVectorizer, TF-IDF, word2vec, and GloVe
  • How to implement a document retrieval system / search engine / similarity search / vector similarity
  • Probability models, language models and Markov models (prerequisite for Transformers, BERT, and GPT-3)
  • How to implement a cipher decryption algorithm using genetic algorithms and language modeling
  • How to implement spam detection
  • How to implement sentiment analysis
  • How to implement an article spinner
  • How to implement text summarization
  • How to implement latent semantic indexing
  • How to implement topic modeling
  • Machine learning (Naive Bayes, Logistic Regression, PCA, SVD, Latent Dirichlet Allocation)
  • Deep learning (ANNs, CNNs, RNNs, LSTM, GRU) (more important prerequisites for BERT and GPT-3)
  • Hugging Face Transformers (VIP only)
  • How to use Python, Scikit-Learn, Tensorflow, +More for NLP
  • Text preprocessing, tokenization, stopwords, lemmatization, and stemming
  • Parts-of-speech tagging and named entity recognition

Deep Learning and NLP: Seq2Seq Model Theory + ChatGPT Prizes

Deep Learning and NLP: Seq2Seq Model Theory + ChatGPT Prizes

Learn the Theory of Deep Natural Language Processing with the Seq2Seq model and enjoy several ChatGPT Prizes at the end!

Learn the theory of Seq2Seq in only 2 hours! A straight to the point Deep Learning and NLP: Seq2Seq Model Theory + ChatGPT Prizes course for those of you who don’t have a lot of time. Embark on an academic adventure with our specialized online course, meticulously designed to illuminate the theoretical aspects of Seq2Seq (Sequence to Sequence) models within the realms of Deep Learning and Natural Language Processing (NLP).

Natural Language Processing (NLP) in Python with 8 Projects

Natural Language Processing (NLP) in Python with 8 Projects

Work on 8 Projects, Learn Natural Language Processing Python, Machine Learning, Deep Learning, SpaCy, NLTK, Sklearn, CNN

Complete Natural Language Processing (NLP) with Spacy & NLTK. This Natural Language Processing (NLP) in Python with 8 Projects course has 10+ Hours of HD Quality video, and following content. Welcome In this section we will get complete idea about what we are going to learn in the whole course and understanding related to natural language processing. Installation & Setup In this section we will get our online environment Google Colab setup. Basics of Natural Language Processing In this section we will dive into all basic NLP task like Tokenization, Lemmatization, stop word removal, name entity recognition, part of speech tagging, and see how to apply with different functions available in a Spacy and NLTK library.

Who this course is for

  • Anyone who wants to learn natural language processing (NLP)
  • Anyone interested in artificial intelligence, machine learning, deep learning, or data science
  • Anyone who wants to go beyond typical beginner-only courses on Udemy

Best Natural Language Processing (NLP) Course for 2024

Complete Data Science,Machine Learning,DL,NLP Bootcamp Best seller

Master the theory, practice,and math behind Data Science,Machine Learning,Deep Learning,NLP with end to end projects
$9 $119.99 REDEEM
REDEEM COUPON
views coupon details

Learn BERT – most powerful NLP algorithm by Google

Learn BERT – most powerful NLP algorithm by Google Understand and apply Google’s game-changing NLP algorithm to …

Intro to Natural Language Processing in Python for AI

Intro to Natural Language Processing in Python for AI Learn the Technology Behind AI Tools Like ChatGPT: …

Taught by Lazy Programmer Inc.

Affiliate Disclosure: Thank you for visiting Udemy Coupons ME. We want to let you know that some of the links on our website are affiliate links. By clicking on these links and making a purchase, we may receive a small commission. This is at no extra cost to you. Our content, including the guidance we provide on education choices, is created with integrity and based on the practical assessment and feedback from our community of users. We focus on helping you find the best online courses to meet your needs, while the affiliate commissions we earn are reinvested into enhancing our platform. We appreciate your support and trust in our recommendations!

Josh Smith
Josh Smith

The Couponos team has over ten years of experience finding free and 100%-off Udemy Coupons. We add over 200 coupons daily and verify them constantly to ensure that we only offer fully working coupon codes. We are experts in finding new offers as soon as they become available. They're usually only offered for a limited usage period, so you must act quickly.